If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1.25+x)(0.75+x)/(2)=1.78*10^-5
We move all terms to the left:
(1.25+x)(0.75+x)/(2)-(1.78*10^-5)=0
We add all the numbers together, and all the variables
(x+1.25)(x+0.75)/2-(1.78*10^-5)=0
We add all the numbers together, and all the variables
(x+1.25)(x+0.75)/2-5-1.78E=0
We multiply parentheses ..
(+x^2+0.75x+1.25x+0.9375)/2-5-1.78E=0
We multiply all the terms by the denominator
(+x^2+0.75x+1.25x+0.9375)-5*2-(1.78E)*2=0
We add all the numbers together, and all the variables
(+x^2+0.75x+1.25x+0.9375)-5*2-(4.8385416546571)*2=0
We add all the numbers together, and all the variables
(+x^2+0.75x+1.25x+0.9375)-19.677083309314=0
We get rid of parentheses
x^2+0.75x+1.25x+0.9375-19.677083309314=0
We add all the numbers together, and all the variables
x^2+2x-18.739583309314=0
a = 1; b = 2; c = -18.739583309314;
Δ = b2-4ac
Δ = 22-4·1·(-18.739583309314)
Δ = 78.958333237256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{78.958333237256}}{2*1}=\frac{-2-\sqrt{78.958333237256}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{78.958333237256}}{2*1}=\frac{-2+\sqrt{78.958333237256}}{2} $
| 4p/3=0 | | (1.25+x)(0.75+x)/(2-x)=1.78*10^-5 | | 2x^2-13x+13=2x^2 | | -13x+13=0 | | 13x-13=0 | | 0.6x=0.2+x-0.2x | | K+3÷7-2(k-4)÷4=1 | | K+3/7-2(k-4)/4=1 | | 2-4x+1)=3-(2x-1) | | 5x−2x=x+8 | | 2(8b+7)=7(b+2) | | 2(a+)+3(2a-1)=19 | | 3x-6(x2)=18 | | A={x/3x-1=2} | | 11+4x=7x−13 | | 11x^2-78x+72=0 | | 5x−1=19 | | •5x−1=19 | | x³+x=10 | | 7−3n=11n+2 | | 22-4y-9y=-30 | | X3+x=60 | | 2x+3=30-x/4 | | 9-2(p-5)=1 | | 2m-18=5m+15 | | 1/8-2/4x+1=0 | | 4+3(7x-1)=6 | | -2.863-0.8y=-2.86 | | -2(w-9)=-1w | | 6(h+6)=7h | | -3(n-8)=-9 | | -4(w+2)=-3w |